
U.S. Department of the Interior

NOT INTENDED FOR NAVIGATIONAL USE

Pamphlet accompanies map

DESCRIPTION OF MAP UNITS

[Note that composite units (gray-stippled areas) are designated on map by composite label indicating both overlying sediment cover and lower (older) unit, separated by slash (for example, Qms/Tus indicates that thin sheet of Qms

Qms Marine nearshore and shelf deposits (Holocene)—Mostly sand; ripples common Qmsf Fine-grained marine nearshore and shelf deposits (Holocene)—Predominantly mud to muddy sand

Qmss Marine shelf sorted bedforms (Holocene)—Inferred to be coarse sand and possibly gravel; found as single depressions or in fields of depressions interspersed with elevated shelf sediments (unit Qms). Although no direct camera observations of these bedforms were made in map area, their composition is inferred from similar features directly observed elsewhere on California shelf

Qmsl Marine slope deposits (Holocene)—Sand and mud; found offshore of shelf break (more than about 80 m deep) on seaward-dipping (6°–8°) surface Marine channel deposits (Holocene)—Predominantly coarse sand; characterized by high backscatter Qls Landslide deposits (Holocene and latest Pleistocene)—May represent various forms of submarine

sediment instabilities, including slumps, slides, and collapse depressions. Characterized by hummocky bathymetry and headscarps incised into shelf (unit Qmsf) or slope (unit Qmsl) deposits Tus Sedimentary bedrock (Tertiary)—Includes sedimentary rocks from the Monterey and Pismo Formations; distinguished on basis of bedding character in shallow seismic-reflection data and (or) multibeam imagery. Stippled areas (composite unit Qms/Tus) indicate where thin sheets of Qms overlie unit Tm Monterey Formation (Miocene)—Diatomaceous, porcelaneous, and opaline shale; tuffaceous siltstone;

Unnamed sandstone and interbedded shale (Late Cretaceous)—Sandstone and interbedded shale and siltstone; mapped in Sam Simeon and Morro Bay areas, in accordance with adjacent onland mapping (Hall, 1973a, 1974). Correlated with the unnamed sandstone and interbedded claystone unit (Kslc), mapped in Point San Luis area (see sheet 5) KJug Unnamed graywacke (Cretaceous and Jurassic)—Thick-bedded, medium-grained sandstone; also locally present is thinly bedded siltstone that has crossbedding, cross-laminations, and graded bedding. Mapped only in San Simeon area, west of Hosgri-San Simeon Fault Zone at Point Piedras Blancas, in

indicate where thin sheets of Qms overlie unit KJf Franciscan Complex (Cretaceous and Jurassic)—Includes fine- to coarse-grained sandstone, siltstone, and some claystone, as well as mélange. Mélange is mainly composed of sheared claystone that contains exotic clasts of conglomerate, blueschist, schist, greenstone, chert, graywacke, and shale. Stippled areas (composite unit Qms/KJf) indicate where thin sheets of Qms overlie unit Jo Coast Range ophiolite (Jurassic)—Includes diabase, basalt, microdiorite, dikes and sills, diorite, and serpentinite. Ophiolite sequences mapped onland at Point Piedras Blancas and Point San Luis (Hall, 1973a, 1976). Serpentinite, which often is faulted and sheared within the Franciscan Complex, is found

accordance with adjacent onland mapping (Hall, 1976). Stippled areas (composite unit Qms/KJug)

in lenses along fault zones **EXPLANATION OF MAP SYMBOLS**

——— Contact—Approximately located

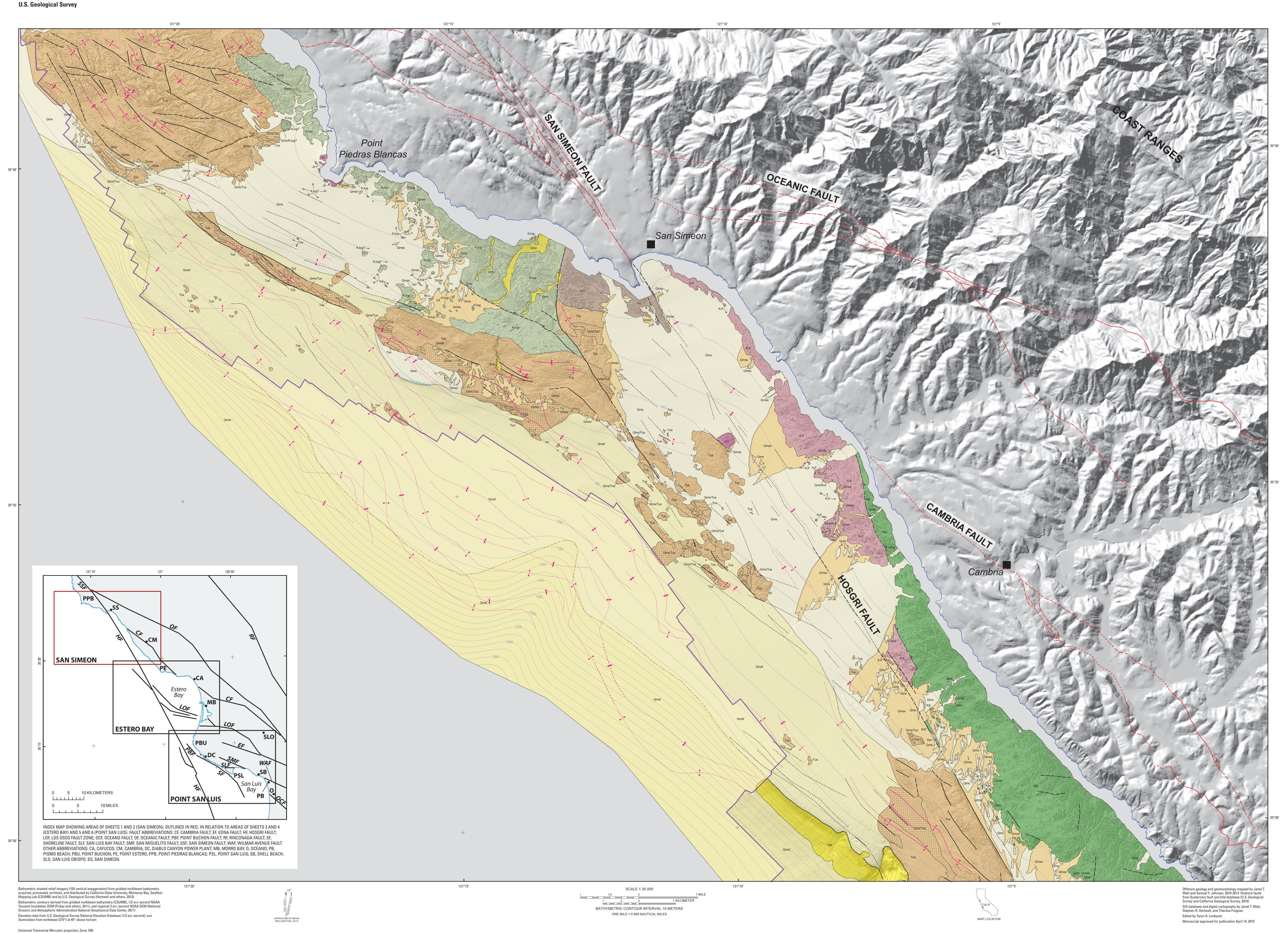
——— Fault (offshore)—Solid where location is certain, dashed where location is inferred, dotted where location is concealed, queried where existence is questionable Fault (onshore)—Solid where location is certain, long-dashed where location is approximate, short-dashed

Folds—Solid where location is certain, dotted where location is concealed

Headscarp of submarine landslide—Sharp, distinct scarp at head of landslide; in places, forms contact between landslide deposits (Qls) and other units. Hachures point downscarp ----- Shelf break—Boundary between continental shelf and upper slope, mapped on basis of distinct break in slope that is visible in multibeam bathymetry or on seismic-reflection profiles. Forms contact between shelf (Qmsf) and slope (Qmsl) deposits. Coincident with submarine landslide scarps offshore of - Slope break—Break in slope along top of latest Pleistocene nearshore bar

——— Boundary of multibeam-bathymetry survey

Area of "no data"—Areas not mapped owing to insufficient high-resolution seafloor mapping data REFERENCES CITED


Friday, D.Z., Taylor, L.A., Eakins, B.W., Carignan, K.S., Grothe, P.R., Lim, E., and Love, M.R., 2011, Digital elevation models of Port San Luis, California—Procedures, data sources, and analysis: National Oceanic and Atmospheric Administration National Geophysical Data Center, Coastal DEMs, accessed December 2011, at http://www.ngdc.noaa.gov/mgg/coastal/coastal.html.

Hall, C.A., 1973a, Geologic map of the Morro Bay South and Port San Luis quadrangles, San Luis Obispo County, California: U.S. Geological Survey Miscellaneous Field Studies Map MF-511, scale 1:24,000. Hall, C.A., 1974, Geologic map of the Cambria region, San Luis Obispo County, California: U.S. Geological Survey Miscellaneous Field Studies Map MF-599, scale 1:24,000.

Hall, C.A., 1976, Geologic map of the San Simeon–Piedras Blancas region, San Luis Obispo County, California: U.S. Geological Survey Miscellaneous Field Studies Map MF-784, scale 1:24,000. Hartwell, S.R., Finlayson, D.P., Dartnell, P., and Johnson, S.Y., 2013, Bathymetry and acoustic backscatter—Estero Bay, California: U.S. Geological Survey Open-File Report 2013–1225, available at http://pubs.usgs.gov/of/

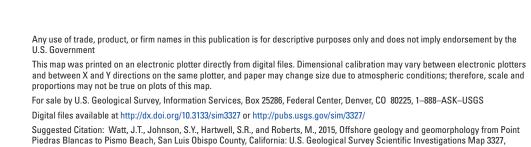
National Oceanic and Atmospheric Administration National Geophysical Data Center, 2011, U.S. coastal relief model, vol. 6—Southern California: National Oceanic and Atmospheric Administration National Geophysical Data Center, U.S. Coastal Relief Model, accessed December 2011, at http://www.ngdc.noaa.gov/mgg/coastal/grddas06/

U.S. Geological Survey and California Geological Survey, 2010, Quaternary fault and fold database of the United States: U.S. Geological Survey database, accessed January 3, 2012, at http://earthquake.usgs.gov/hazards/qfaults/.

Offshore Geology and Geomorphology of San Simeon Map Area

Offshore Geology and Geomorphology from Point Piedras Blancas to Pismo Beach, San Luis Obispo County, California

Janet T. Watt, Samuel Y. Johnson, Stephen R. Hartwell, and Michelle Roberts


http://dx.doi.org/10.3133/sim3327

pamphlet 6 p., 6 sheets, scale 1:35,000, http://dx.doi.org/10.3133/sim3327.

